Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Immunol ; 152: 215-223, 2022 12.
Article in English | MEDLINE | ID: covidwho-2095806

ABSTRACT

Identification of immunologic epitopes against SARS-CoV-2 is crucial for the discovery of diagnostic, therapeutic, and preventive targets. In this study, we used a pan-coronavirus peptide microarray to screen for potential B-cell epitopes and validated the results with peptide-based ELISA. Specifically, we identified three linear B-cell epitopes on the SARS-CoV-2 proteome, which were recognized by convalescent plasma from COVID-19 patients. Interestingly, two epitopes (S 809-823 and R1ab 909-923) strongly reacted to convalescent plasma collected at the early phase (< 90 days) of COVID-19 symptom onset, whereas one epitope (M 5-19) reacted to convalescent plasma collected > 90 days after COVID-19 symptom onset. Neutralization assays using antibody depletion with the identified spike (S) peptides revealed that three S epitopes (S 557-571, S 789-803, and S 809-823) elicited neutralizing antibodies in COVID-19 patients. However, the levels of virus-specific antibody targeting S 789-803 only positively correlated with the neutralizing rates at the early phase (<60 days) after disease onset, and the antibody titers diminished quickly with no correlation to the neutralizing activity beyond two months after recovery from COVID-19. Importantly, stimulation of peripheral blood mononuclear cells from COVID-19-recovered patients with these SARS-CoV-2 S peptides resulted in poor virus-specific B cell activation, proliferation, differentiation into memory B cells, and production of immunoglobulin G (IgG) antibodies, despite the B-cells being functionally competent as demonstrated by their response to non-specific stimulation. Taken together, these findings indicate that these newly identified SARS-CoV-2-specific B-cell epitopes can elicit neutralizing antibodies, with titers and/or neutralizing activities declining significantly within 2-3 months in the convalescent plasma of COVID-19 patients.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Epitopes, B-Lymphocyte , Spike Glycoprotein, Coronavirus , Leukocytes, Mononuclear , Antibodies, Viral , Antibodies, Neutralizing , COVID-19 Serotherapy
2.
Int J Environ Res Public Health ; 19(19)2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2065939

ABSTRACT

Rural resilience is not only a comprehensive reflection of "thriving businesses, pleasant living environments, social etiquette and civility, effective governance, and prosperity". It is also the unity of resilience in industry, ecology, culture, organization and livelihood. This paper uses the entropy weight-TOPSIS method to measure the rural resilience level in 31 regions in China and analyzes the configuration of influencing factors with the Fuzzy-set qualitative comparative analysis (fsQCA). The results of the study are as follows: (1) The level of rural resilience in China showed a stable increase from 2010 to 2019, but the overall level was low, with large regional disparities, showing a significant positive spatial correlation. (2) In the high-level rural resilience explanatory path, labor-driven, cultural-driven and market-labor-technology linkage-driven play a core role, while administrative force is not playing a significant role. In the explanation path of non-high level rural resilience, the market-labor absent, administrative-market absent and cultural absent hinder the improvement of rural resilience. In summary, we put forward the following suggestions. Policy renovation and support should be strengthened. Adaption to local conditions should be considered in order to achieve sustainable and differentiated development. Development should be coordinated and balanced in different regions so as to achieve an overall resilience level in rural areas.


Subject(s)
Social Planning , Sustainable Development , China , Ecology , Spatio-Temporal Analysis
3.
Sustainability ; 14(17):10585, 2022.
Article in English | ProQuest Central | ID: covidwho-2024181

ABSTRACT

Building resilient cities is the foundation and guarantee for the Chengdu-Chongqing economic circle to achieve high-quality and sustainable development. This research uses the entropy TOPSIS method to evaluate the urban resilience level of the Chengdu-Chongqing Economic Circle and uses the Fuzzy Set Qualitative Comparative Analysis (fsQCA) approach to analyze the configuration of contributing factors. Research indicates that the overall urban resilience level is relatively low, with more than 70% of the areas being less than 0.3. Overall, Chengdu (Level 1) and Chongqing central districts (Level 2) are 1–3 levels higher than their surrounding areas, which indicates insufficient spatial balance. The consistency scores of the single-antecedent condition necessity analyses were all less than 0.9, and the consistencies of all configuration analysis results were all greater than 0.8. This research proves that the creation of urban resilience is the result of a combination of factors, rather than the independent influence from any individual factor. Financial and innovation forces are the key driving factors that affect the level of urban resilience. The multiple driving model also helps to improve the level of resilience. The lack of cultural and innovation forces in Chongqing area has been proven to inhibit the level of urban resilience, and the lack of openness and political focus has resulted in a low level of resilience in the Sichuan area. We propose to promote the construction of a “dual core”, to create synergies between Chongqing and Chengdu, and to achieve balanced and integrated development in the entire region. We focus on the key factors affecting the resilience level of the Chengdu-Chongqing economic circle. In the future, we suggest further opening the market and implementing a developing strategy that is driven by economy and innovation. Regarding the construction of the Sichuan and the Chongqing areas, we encourage the two regions to adjust policies based on local conditions. First, the administration should solve the driving force deficiencies for development, then adopt differentiation strategies for regional development.

4.
Proteomics Clin Appl ; 16(5): e2200031, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1976772

ABSTRACT

BACKGROUND: While the majority of COVID-19 patients fully recover from the infection and become asymptomatic, a significant proportion of COVID-19 survivors experience a broad spectrum of symptoms lasting weeks to months post-infection, a phenomenon termed "post-acute sequelae of COVID-19 (PASC)." The aim of this study is to determine whether inflammatory proteins are dysregulated and can serve as potential biomarkers for systemic inflammation in COVID-19 survivors. METHODS: We determined the levels of inflammatory proteins in plasma from 22 coronavirus disease 2019 (COVID-19) long haulers (COV-LH), 22 COVID-19 asymptomatic survivors (COV-AS), and 22 healthy subjects (HS) using an Olink proteomics assay and assessed the results by a beads-based multiplex immunoassay. RESULTS: Compared to HS, we found that COVID-19 survivors still exhibited systemic inflammation, as evidenced by significant changes in the levels of multiple inflammatory proteins in plasma from both COV-LH and COV-AS. CXCL10 was the only protein that significantly upregulated in COV-LH compared with COV-AS and HS. CONCLUSIONS: Our results indicate that several inflammatory proteins remain aberrantly dysregulated in COVID-19 survivors and CXCL10 might serve as a potential biomarker to typify COV-LH. Further characterization of these signature inflammatory molecules might improve the understanding of the long-term impacts of COVID-19 and provide new targets for the diagnosis and treatment of COVID-19 survivors with PASC.


Subject(s)
COVID-19 , Biomarkers , COVID-19/complications , Humans , Inflammation , SARS-CoV-2 , Survivors
5.
Virulence ; 13(1): 670-683, 2022 12.
Article in English | MEDLINE | ID: covidwho-1791073

ABSTRACT

Glycans are among the most important cell molecular components. However, given their structural diversity, their functions have not been fully explored. Glycosylation is a vital post-translational modification for various proteins. Many bacteria and viruses rely on N-linked and O-linked glycosylation to perform critical biological functions. The diverse functions of glycosylation on viral proteins during viral infections, including Dengue, Zika, influenza, and human immunodeficiency viruses as well as coronaviruses have been reported. N-linked glycosylation is the most common form of protein modification, and it modulates folding, transportation and receptor binding. Compared to N-linked glycosylation, the functions of O-linked viral protein glycosylation have not been comprehensively evaluated. In this review, we summarize findings on viral protein glycosylation, with particular attention to studies on N-linked glycosylation in viral life cycles. This review informs the development of virus-specific vaccines or inhibitors.


Subject(s)
Zika Virus Infection , Zika Virus , Glycosylation , Host Microbial Interactions , Humans , Protein Processing, Post-Translational , Viral Proteins/metabolism , Virulence , Zika Virus/metabolism
6.
Virus Res ; 304: 198508, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1331289

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to public health. An explicit investigation of COVID-19 immune responses, particularly the host immunity in recovered subjects, will lay a foundation for the rational design of therapeutics and/or vaccines against future coronaviral outbreaks. Here, we examined virus-specific T cell responses and identified T cell epitopes using peptides spanning SARS-CoV-2 structural proteins. These peptides were used to stimulate peripheral blood mononuclear cells (PBMCs) derived from COVID-19-recovered subjects, followed by an analysis of IFN-γ-secreting T cells by enzyme-linked immunosorbent spot (ELISpot). We also evaluated virus-specific CD4 or CD8 T cell activation by flow cytometry assay. By screening 52 matrix pools (comprised of 315 peptides) of the spike (S) glycoprotein and 21 matrix pools (comprised of 102 peptides) spanning the nucleocapsid (N) protein, we identified 28 peptides from S protein and 5 peptides from N protein as immunodominant epitopes. The immunogenicity of these epitopes was confirmed by a second ELISpot using single peptide stimulation in memory T cells, and they were mapped by HLA restrictions. Notably, SARS-CoV-2 specific T cell responses positively correlated with B cell IgG and neutralizing antibody responses to the receptor-binding domain (RBD) of the S protein. Our results demonstrate that defined levels of SARS-CoV-2 specific T cell responses are generated in some, but not all, COVID-19-recovered subjects, fostering hope for the protection of a proportion of COVID-19-exposed individuals against reinfection. These results also suggest that these virus-specific T cell responses may induce protective immunity in unexposed individuals upon vaccination, using vaccines generated based on the immune epitopes identified in this study. However, SARS-CoV-2 S and N peptides are not potently immunogenic, and none of the single peptides could universally induce robust T cell responses, suggesting the necessity of using a multi-epitope strategy for COVID-19 vaccine design.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Pandemics , Spike Glycoprotein, Coronavirus/immunology , Adult , CD8-Positive T-Lymphocytes/cytology , COVID-19/epidemiology , Female , Humans , Immunodominant Epitopes/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
7.
Sci Rep ; 11(1): 5558, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125779

ABSTRACT

The recent COVID-19 pandemic poses a serious threat to global public health, thus there is an urgent need to define the molecular mechanisms involved in SARS-CoV-2 spike (S) protein-mediated virus entry that is essential for preventing and/or treating this emerging infectious disease. In this study, we examined the blocking activity of human COVID-19 convalescent plasma by cell-cell fusion assays using SARS-CoV-2-S-transfected 293 T as effector cells and ACE2-expressing 293 T as target cells. We demonstrate that the SARS-CoV-2 S protein exhibits a very high capacity for membrane fusion and is efficient in mediating virus fusion and entry into target cells. Importantly, we find that COVID-19 convalescent plasma with high titers of IgG neutralizing antibodies can block cell-cell fusion and virus entry by interfering with the SARS-CoV-2-S/ACE2 or SARS-CoV-S/ACE2 interactions. These findings suggest that COVID-19 convalescent plasma may not only inhibit SARS-CoV-2-S but also cross-neutralize SARS-CoV-S-mediated membrane fusion and virus entry, supporting its potential as a preventive and/or therapeutic agent against SARS-CoV-2 as well as other SARS-CoV infections.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Cell Fusion/methods , Female , Humans , Immunization, Passive/methods , Male , Membrane Fusion/drug effects , Middle Aged , Pandemics/prevention & control , Plasma/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , COVID-19 Serotherapy
8.
Bioconjug Chem ; 31(11): 2553-2563, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-872629

ABSTRACT

As a large enveloped RNA virus, coronavirus is of considerable medical and veterinary significance, and anticoronavirus treatment is challenging due to its biodiversity and rapid variability. In this study, Au@Ag nanorods (Au@AgNRs) were successfully synthesized by coating AuNRs with silver and were shown for the first time to have activity against the replication of porcine epidemic diarrhea virus (PEDV). Viral titer analysis demonstrated that Au@AgNRs could inhibit PEDV infection by 4 orders of magnitude at 12 h post-infection, which was verified by viral protein expression analysis. The potential mechanism of action showed that Au@AgNRs could inhibit the entry of PEDV and decrease the mitochondrial membrane potential and caspase-3 activity. Additionally, we demonstrated that a large amount of virus proliferation can cause the generation of reactive oxygen species in cells, and the released Ag+ and exposed AuNRs by Au@AgNRs after the stimulation of reactive oxygen species has superior antiviral activity to ensure long-term inhibition of the PEDV replication cycle. The integrated results support that Au@AgNRs can serve as a potential therapeutic strategy to prevent the replication of coronavirus.


Subject(s)
Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Porcine epidemic diarrhea virus/drug effects , Porcine epidemic diarrhea virus/physiology , Silver/chemistry , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gold/toxicity , Nanotubes/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL